Перевод: с русского на английский

с английского на русский

тип данных элемента данных

  • 1 тип данных элемента данных

    1. DE datatype
    2. Data Element Datatype

    3.1.6 тип данных элемента данных (Data Element Datatype; DE datatype): Спецификация множества различных значений для элемента данных, характеризуемая свойствами этих значений и возможными операциями над этими значениями.

    Примечание 1 - Множество различных значений, определенное значением типа данных элемента модели данных, может быть ограничено подмножеством, основанным на спецификации или стандарте, который принят внешним по отношению к модели данных. Ссылка на эту внешнюю спецификацию или стандарт приведена в качестве значения подходящего элемента данных в модели данных. Какой элемент данных обеспечивает ссылку на эту внешнюю спецификацию или стандарт, указано в том же месте, где определен тип данных элемента данных.

    Примечание 2 - Термин адаптирован из ИСО/МЭК ТО 11404-3:1996, определение 4.11.

    Источник: ГОСТ Р ИСО/МЭК 19778-1-2011: Информационная технология. Обучение, образование и подготовка. Технология сотрудничества. Общее рабочее пространство. Часть 1. Модель данных общего рабочего пространства оригинал документа

    Русско-английский словарь нормативно-технической терминологии > тип данных элемента данных

  • 2 тип атрибута элемента данных

    Русско-английский словарь нормативно-технической терминологии > тип атрибута элемента данных

  • 3 тип элемента данных

    1. data element type DET

    4.12 тип элемента данных (data element type DET): Единица данных, для которой указано идентификационное представление, описание и значение.

    Источник: ГОСТ Р 54136-2010: Системы промышленной автоматизации и интеграция. Руководство по применению стандартов, структура и словарь оригинал документа

    Русско-английский словарь нормативно-технической терминологии > тип элемента данных

  • 4 атрибут элемента

    Характеристика элемента (ИСО 19101*).
    Примечание. Атрибут элемента включает название, тип данных и область связанных с ним значений.
    *Стандарт 19101 ИСО ‘Географическая информация: базовая модель’
    Characteristic of a feature (ISO 19101*).
    Note.— A feature attribute has a name, a data type and a value domain associated with it.
    (AN 15)
    *ISO Standard 19101, Geographic information — Reference model Official definition added to AN 15 by Amdt 33 (25/11/2004).

    Русско-английский словарь международной организации гражданской авиации > атрибут элемента

  • 5 роль

    1. role

     

    роль
    Набор ответственностей, деятельностей и полномочий, назначенных сотруднику или команде. Роль определяется в процессе или функции. Один сотрудник или команда может иметь несколько ролей. Например, роли менеджера конфигураций и менеджера изменений могут выполняться одним сотрудником. Этот термин также используется для описания назначения чего-либо.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    EN

    role
    A set of responsibilities, activities and authorities assigned to a person or team. A role is defined in a process or function. One person or team may have multiple roles for example, the roles of configuration manager and change manager may be carried out by a single person. Role is also used to describe the purpose of something or what it is used for.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    Тематики

    EN

    роль (role): Наименование поведенческого набора, связанного с выполнением какой-либо работы (ИСО/ТС 17090-1).

    Источник: ГОСТ Р ИСО/ТС 18308-2008: Информатизация здоровья. Требования к архитектуре электронного учета здоровья

    3.2.10 роль (role): Перечень или список прав и обязанностей, установленных для потенциального или действительного члена группы взаимодействия.

    Примечание - При назначении одной или нескольких ролей члену группы взаимодействия совокупные права и обязанности, связанные с ролью(ями), передаются этому участнику.

    Пример - Ссылка на элемент модели данных идентификатора элемента модели данных 1.3. 2 настоящего стандарта (CW_ID_ value) в другом стандарте технологий взаимодействия должна выглядеть в виде ссылки «ИСО/ МЭК 19778-1: 2008, 1.3..

    b) Обозначение

    Обозначение элемента модели данных (см. определение 3.1.11).

    Обозначения элемента модели данных используются в контексте стандартов технологий взаимодействия для установления ссылок на конкретные элементы модели данных. В отличие от лингвистически нейтральных атрибутов элементов модели данных у обозначения элемента модели данных есть символическое значение; но в то же время данный атрибут может быть ориентирован на конкретный язык и может быть предметом интернационализации.

    c) Определение

    Определение элемента модели данных (см. определение 3.1.10).

    Поскольку определения представлены в таблице модели данных в наиболее компактной форме, дополнительная информация об элементах модели данных приведена в отдельном подпункте стандартов исключительно для пояснения. Во всех стандартах технологии взаимодействия определение элемента модели данных, записанное в ячейках таблицы в 3-й колонке, считают наиболее аутентичным.

    d) Степень обязательности

    Степень обязательности элемента модели данных (см. определение 3.1.15).

    При создании реализаций модели данных из модели данных степень обязательности элемента модели данных любого элемента модели данных должна исходить из степени обязательности соответствующего предка. Для модели данных это означает, что элементы модели данных со степенью обязательности элемента модели данных «выбираемый» могут иметь потомков со статусом «обязательный». В случае если любой элемент модели данных со степенью обязательности элемента модели данных «обязательный» имеет единственного потомка со статусом «выбираемый», любая реализация этой модели данных предоставляет одного или более потомка элемента данных в реализации этого элемента модели данных.

    Определены четыре возможных значения степени обязательности элемента модели данных: обязательный, выбираемый, условно обязательный и условно выбираемый.

    e) Множественность

    Множественность элемента модели данных (см. определение 3.1.14).

    Значения для диапазона значений элементов модели данных (в других источниках также определенных как «повторяемость элементов») определяют, насколько часто реализация элемента модели данных может встречаться в этой реализации модели данных.

    В реализациях моделей данных многочисленные реализации элемента данных, как правило, должны быть расположены рядом друг с другом, в то время как реализации многочисленных составных элементов (совокупных подструктур) являются результатом реализации в этих подструктурах, представленных в смежном или последовательном порядке. По умолчанию, не важен порядок размещения или перечисления реализаций разнообразных элементов модели данных. Исключение вводят примечанием об указании особого порядка представления информации в данной ячейке строки таблицы элемента модели данных.

    Необходимый минимум реализаций элемента модели данных будет принят больше нуля (даже если установлен на нуль) в тех случаях, когда степень обязательности элемента модели данных имеет значение «обязательный».

    В тех случаях, когда два значения (необходимый минимум и допустимый максимум) различаются, интервал определяют как строку связанных символов «< необходимый минимум>..< допустимый максимум>», где значения < необходимый минимум> и < допустимый максимум> - неотрицательные целые числа.

    Для указания на бесконечное множество допустимых значений параметр < допустимый максимум> записывают с символом «*».

    В тех случаях, когда два значения (необходимый минимум и допустимый максимум) совпадают, устанавливают только одно значение.

    f) Тип данных

    Тип данных, определяющий элемент данных (см. определение 3.1.6).

    В стандартах технологии взаимодействия установлено множество возможных значений для данного элемента модели данных в качестве значения типа данных элемента данных. Множество значений может быть ограничено конкретным набором значений, основанным на спецификации или стандарте, не относящемся к модели данных. Ссылка на эту внешнюю спецификацию или стандарт должна быть приведена в качестве значения соответствующего элемента данных модели данных. Модели данных, определенные в стандартах технологии взаимодействия, предоставляют структуры элемента данных и элемента модели данных специально для включения таких ссылок.

    При использовании таких ссылок элемент данных, включающий в себя ссылки, должен быть указан в колонке «Тип данных».

    g) Примеры

    Могут содержать одну или несколько иллюстраций возможных значений элемента данных.

    Источник: ГОСТ Р ИСО/МЭК 19778-1-2011: Информационная технология. Обучение, образование и подготовка. Технология сотрудничества. Общее рабочее пространство. Часть 1. Модель данных общего рабочего пространства оригинал документа

    3.134 роль (role): Поименованное специфическое поведение сущности, участвующей в определенном контексте.

    Примечание - Роль может быть статической (например, конец соединения) или динамической (например, коллективная роль).

    Источник: ГОСТ Р 54136-2010: Системы промышленной автоматизации и интеграция. Руководство по применению стандартов, структура и словарь оригинал документа

    Русско-английский словарь нормативно-технической терминологии > роль

  • 6 устройство защиты от импульсных перенапряжений

    1. voltage surge protector
    2. surge protector
    3. surge protective device
    4. surge protection device
    5. surge offering
    6. SPD

     

    устройство защиты от импульсных перенапряжений
    УЗИП

    Устройство, которое предназначено для ограничения переходных перенапряжений и отвода импульсных токов. Это устройство содержит по крайней мере один нелинейный элемент.
    [ ГОСТ Р 51992-2011( МЭК 61643-1: 2005)]

    устройство защиты от импульсных разрядов напряжения
    Устройство, используемое для ослабления действия импульсных разрядов перенапряжений и сверхтоков ограниченной длительности. Оно может состоять из одного элемента или иметь более сложную конструкцию. Наиболее распространенный тип SPD - газонаполненные разрядники.
    (МСЭ-Т K.44, МСЭ-Т K.46, МСЭ-Т K.57,, МСЭ-Т K.65, МСЭ-Т K.66)
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    См. также:

    • импульсное перенапряжение
    • ГОСТ Р 51992-2011( МЭК 61643-1: 2005)
      Устройства защиты от импульсных перенапряжений низковольтные.
      Часть 1. Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах.
      Технические требования и методы испытаний

    КЛАССИФИКАЦИЯ  (по ГОСТ Р 51992-2011( МЭК 61643-1: 2005)) 
     


    ВОПРОС: ЧТО ТАКОЕ ТИПЫ И КЛАССЫ УЗИП ?

    Согласно классификации ГОСТ, МЭК а также немецкого стандарта DIN, Устройства Защиты от Импульсных Перенапряжений УЗИП делятся на разные категории по методу испытаний и месту установки.

    Класс 1 испытаний соответствует Типу 1 и Классу Требований B
    Класс 2 испытаний соответствует Типу 2 и Классу Требований C
    Класс 3 испытаний соответствует Типу 3 и Классу Требований D

    ВОПРОС: ЧЕМ УЗИП ТИП 1 ОТЛИЧАЕТСЯ ОТ УЗИП ТИП 2?

    УЗИП тип 1 устанавливаются на вводе в здание при воздушном вводе питания или при наличии системы внешней молниезащиты. УЗИП в схеме включения предназначен для отвода части прямого тока молнии. В соответствии с ГОСТ Р 51992-2002, УЗИП 1-го класса испытаний ( тип 1) испытываются импульсом тока с формой волны 10/350 мкс.
    УЗИП тип 2 служат для защиты от наведённых импульсов тока и устанавливаются либо после УЗИП тип 1, либо на вводе в здание при отсутствии вероятности попадания части тока молнии. УЗИП 2 класса испытаний (тип 2) испытываются импульсом тока с формой 8/20 мкс.
    ВОПРОС: ГДЕ ПРИМЕНЯЕТСЯ УЗИП ТИПА 3 ?

    Устройства для Защиты от Импульсных Перенапряжений Типа 3 предназначены для "тонкой" защиты наиболее ответственного и чувствительного электрооборудования, например медицинской аппаратуры, систем хранения данных и пр. УЗИП Типа 3 необходимо устанавливать не далее 5 метров по кабелю от защищаемого оборудования. Модификации УЗИП Типа 3 могут быть выполнены в виде адаптера сетевой розетки или смонтированы непосредственно в корпусе или на шасси защищаемого прибора. Для бытового применения доступна версия MSB06 скрытого монтажа, за обычной сетевой розеткой.

    ВОПРОС: ЗАЧЕМ НУЖЕН СОГЛАСУЮЩИЙ ДРОССЕЛЬ?

    Для правильного распределения мощности импульса между ступенями защиты ставят линию задержки в виде дросселя индуктивностью 15 мкГн или отрезок кабеля длиной не менее 15 м, имеющего аналогичную индуктивность. В этом случае сначала сработает УЗИП 1-го класса и возьмёт на себя основную энергию импульса, а затем устройство 2-го класса ограничит напряжение до безопасного уровня.

    ВОПРОС: ЗАЧЕМ СТАВИТЬ УЗИП, ЕСЛИ НА ВВОДЕ УЖЕ СТОИТ АВТОМАТ ЗАЩИТЫ И УЗО?

    Вводной автомат (например на 25, 40, 63 А) защищает систему электроснабжения от перегрузки и коротких замыканий со стороны потребителя. Устройство защитного отключения УЗО (например, с током отсечки 30 или 100 мА) защищает человека от случайного поражения электрическим током.
    Но ни одно из этих устройств не может защитить электрическую сеть и оборудование от микросекундных импульсов большой мощности. Такую защиту обеспечивает только Устройство Защиты от Импульсных Перенапряжений УЗИП со временем срабатывания в наносекундном диапазоне.

    ВОПРОС: КАКОЕ УСТРОЙСТВО ЛУЧШЕ ЗАЩИТИТ ОТ ГРОЗЫ: УЗИП ИЛИ ОПН ?

    УЗИП - это официальное (ГОСТ) наименование всего класса устройств для защиты от последствий токов молний и импульсных перенапряжений в сетях до 1000 В. В литературе, в публикациях в интернете до сих пор встречаются названия - ОПН (Ограничитель перенапряжения), Разрядник, Молниеразрядник, Грозоразрядник - которые применительно к сетям до 1000 Вольт означают по сути одно устройство - это УЗИП. Для организации эффективной молниезащиты необходимо обращать внимание не на название устройства, а на его характеристики.

    ВОПРОС: КАК СРАВНИТЬ УЗИП РАЗНЫХ ПРОИЗВОДИТЕЛЕЙ?

    Все УЗИП, продаваемые на территории России, должны производиться и испытываться в соответствии с ГОСТ Р 51992-2002( аналог международного стандарта МЭК 61643-1-98). ГОСТ Р 51992-2002 предусматривает наличие у каждого устройства ряда характеристик, которые производитель обязан указать в паспорте и на самом изделии.

    Класс испытаний (Тип) 1, 2 или 3
    Импульсный ток Iimp (10/350 мкс) для УЗИП 1 класса
    Номинальный импульсный ток In (8/20 мкс)
    Максимальный импульсный ток Imax (8/20 мкс)
    Уровень напряжения защиты Up, измеренный при In

    По этим характеристикам и происходит сравнение. Замечание: некоторые производители указывают значения импульсных токов на фазу (модуль), а другие - на устройство в целом. Для сравнения их надо приводить к одному виду.

    [ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]


    ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ УСТРОЙСТВ ЗАЩИТЫ ОТ
    ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ В НИЗКОВОЛЬТНЫХ СИЛОВЫХ РАСПРЕДЕЛИТЕЛЬНЫХ СЕТЯХ
    ЗОРИЧЕВ А.Л.,
    заместитель директора
    ЗАО «Хакель Рос»

    В предыдущих номерах журнала были изложены теоретические основы применения устройств защиты от импульсных перенапряжений (УЗИП) в низковольтных электрических сетях. При этом отмечалась необходимость отдельного более детального рассмотрения некоторых особенностей эксплуатации УЗИП, а также типовых аварийных ситуаций, которые могут возникнуть при этом.

    1. Диагностика устройств защиты от перенапряжения
    Конструкция и параметры устройств защиты от импульсных перенапряжения постоянно совершенствуются, повышается их надежность, снижаются требования по техническому обслуживанию и контролю. Но, не смотря на это, нельзя оставлять без внимания вероятность их повреждения, особенно при интенсивных грозах, когда может произойти несколько ударов молнии непосредственно в защищаемый объект или вблизи от него во время одной грозы. Устройства защиты, применяемые в низковольтных электрических сетях и в сетях передачи информации подвержены так называемому старению (деградации), т.е. постепенной потере своих способностей ограничивать импульсные перенапряжения. Интенсивнее всего процесс старения протекает при повторяющихся грозовых ударах в течении короткого промежутка времени в несколько секунд или минут, когда амплитуды импульсных токов достигают предельных максимальных параметров I max (8/20 мкс) или I imp (10/350 мкс) для конкретных типов защитных устройств.

    Повреждение УЗИП происходит следующим образом. Разрядные токи, протекающие при срабатывании защитных устройств, нагревают корпуса их нелинейных элементов до такой температуры, что при повторных ударах с той же интенсивностью (в не успевшее остыть устройство) происходит:

    −   у варисторов - нарушение структуры кристалла (тепловой пробой) или его полное разрушение;
    −   у металлокерамических газонаполненных разрядников (грозозащитных разрядников) - изменение свойств в результате утечки газов и последующее разрушение керамического корпуса;

    −  у разрядников на основе открытых искровых промежутков -за счет взрывного выброса ионизированных газов во внутреннее пространство распределительного щита могут возникать повреждения изоляции кабелей, клеммных колодок и других элементов электрического шкафа или его внутренней поверхности. На практике известны даже случаи значительной деформации металлических шкафов, сравнимые только с последствиями взрыва ручной гранаты. Важной особенностью при эксплуатации разрядников этого типа в распределительных щитах является также необходимость повышения мер противопожарной безопасности.

    По указанным выше причинам все изготовители устройств защиты от перенапряжения рекомендуют осуществлять их регулярный контроль, особенно после каждой сильной грозы. Проверку необходимо осуществлять с помощью специальных тестеров, которые обычно можно заказать у фирм, занимающихся техникой защиты от перенапряжений. Контроль, осуществляемый другими способами, например, визуально или с помощью универсальных измерительных приборов, в этом случае является неэффективным по следующим причинам:

    −  Варисторное защитное устройство может быть повреждёно, хотя сигнализация о выходе варистора из строя не сработала. Варистор может обладать искажённой вольтамперной характеристикой (более высокая утечка) в области токов до 1 мA (область рабочих токов при рабочем напряжении сети; настоящую область не возможно проверить с помощью обычно применяемых приборов). Проверка осуществляется минимально в 2-х точках характеристики, напр. при 10 и 1000 мкА, с помощью специального источника тока с высоким подъёмом напряжения (1 до 1,5 кВ).

    −    Металлокерамический газонаполненный (грозовой) разрядник - с помощью визуального контроля можно заметить только поврежденный от взрыва внешний декоративный корпус устройства (или его выводы). Что бы выяснить состояние самого разрядника необходимо разобрать внешний корпус, но даже при таком контроле практически нельзя обнаружить утечку его газового заряда. Контроль напряжения зажигания грозового разрядника с помощью обыкновенных измерительных приборов выполнить очень трудно, он осуществляется при помощи специализированных тестеров.

     −   Разрядник с открытым искровым промежутком - проверку исправной работы можно осуществить только после его демонтажа и измерения с помощью генератора грозового тока с характеристикой 10/350 мкс по заказу у изготовителя устройств для защиты от импульсных перенапряжений.
     

    2. Защита от токов утечки и короткого замыкания в устройствах защиты от импульсных перенапряжений

    Основным принципом работы устройства защиты от импульсных перенапряжений является выравнивание потенциалов между двумя проводниками, одним из которых является фазный (L) проводник, а другим нулевой рабочий (N) или (РЕN) проводник, т.е. устройство включается параллельно нагрузке. При этом, в случае выхода из строя УЗИП (пробой изоляции, пробой или разрушение нелинейного элемента) или невозможности гашения сопровождающего тока (в случае применения искровых разрядников или разрядников скользящего разряда) возможно возникновение режима короткого замыкания между данными проводниками, что может привести к повреждению электроустановки и даже возникновению пожара. Стандартами МЭК предусматривается два обязательных способа защиты электроустановок потребителя 220/380 В от подобного рода ситуаций.

    2.1. Устройство теплового отключения в варисторных устройствах защиты от импульсных перенапряжений

    Имеющееся в варисторных ограничителях перенапряжений устройство отключения при перегреве (тепловая защита), как правило, срабатывает в результате процесса старения варистора. Суть явления заключается в том, что при длительной эксплуатации, а также в результате воздействий импульсов тока большой амплитуды происходит постепенное разрушение p-n переходов в структуре варистора, что приводит к снижению значения такого важного параметра, как наибольшее длительно допустимое рабочее напряжение защитного устройства (максимальное рабочее напряжение) Uc. Этот параметр определяется для действующего напряжения электрической сети и указывается производителями защитных устройств в паспортных данных и, как правило, непосредственно на корпусе защитного устройства. Для примера: если на корпусе защитного устройства указано значение Uc = 275 В, это обозначает, что устройство будет нормально функционировать в электропитающей сети номиналом 220 В при увеличении действующего напряжения на его клеммах до 275 В включительно (значение взято с достаточным запасом при условии выполнения электроснабжающей организацией требований ГОСТ 13109 «Нормы качества электрической энергии в системах электроснабжения общего назначения»).

    В результате «старения» варистора значение Uc снижается и в определенный момент времени может оказаться меньше чем действующее напряжение в сети. Это приведет к возрастанию токов утечки через варистор и быстрому повышению его температуры, что может вызвать деформацию корпуса устройства, проплавление фазными клеммами пластмассы и, в конечном итоге, короткое замыкание на DIN-рейку и даже пожар.

    В связи с этим, для применения в электроустановках рекомендуются только те варисторные ограничители перенапряжения, которые имеют в своем составе устройство теплового отключения (терморазмыкатель). Конструкция данного устройства, как правило, очень проста и состоит из подпружиненного контакта, припаянного легкоплавким припоем к одному из выводов варистора, и связанной с ним системы местной сигнализации. В некоторых устройствах дополнительно применяются «сухие» контакты для подключения дистанционной сигнализации о выходе ограничителя перенапряжений из строя, позволяющие с помощью физической линии передавать информацию об этом на пульт диспетчера или на вход какой-либо системы обработки и передачи телеметрических данных. (См. рис. 1).

    5018

    2.2. Применение быстродействующих предохранителей для защиты от токов короткого замыкания

    Несколько другая ситуация возникает в случае установившегося длительного превышения действующего напряжения в сети над наибольшим длительно допустимым рабочим напряжением защитного устройства (Uc), определенным ТУ для данного УЗИП. Примером такой ситуации может быть повышение напряжения по вине поставщика электроэнергии или обрыв (отгорание) нулевого проводника при вводе в электроустановку (в трехфазной сети с глухозаземленной нейтралью трансформатора). Как известно, в последнем случае к нагрузке может оказаться приложенным межфазное напряжение 380 В. При этом устройство защиты от импульсных перенапряжений сработает, и через него начнет протекать ток. Величина этого тока будет стремиться к величине тока короткого замыкания (рассчитывается по общеизвестным методикам для каждой точки электроустановки) и может достигать нескольких сотен ампер. Практика показывает, что устройство тепловой защиты не успевает отреагировать в подобных ситуациях из-за инерционности конструкции. Варистор, как правило, разрушается в течение нескольких секунд, после чего режим короткого замыкания также может сохраняться через дугу (по продуктам разрушения и горения варистора). Как же как и в предыдущем случае, возникает вероятность замыкания клемм устройства на корпус шкафа или DIN-рейку при расплавлении пластмассы корпуса и возможность повреждения изоляции проводников в цепях включения защитных устройств. Сказанное выше относится не только к варисторным ограничителям, но и к УЗИП на базе разрядников, которые не имеют в своем составе устройства теплового отключения. На фотографии (рис. 2) показаны последствия подобной ситуации, в результате которой произошел пожар в распределительном щите.

    5019

    Рис.2 Выход из строя варисторного УЗИП привел к пожару в ГРЩ.

    На рисунке 3 показано варисторное УЗИП, которое в результате аварийной ситуации стало источником пожара в щите.

    5020

    Рис.3

    Для того чтобы предотвратить подобные последствия рекомендуется устанавливать последовательно с устройствами защиты от импульсных перенапряжений предохранители с характеристиками срабатывания gG или gL (классификация согласно требованиям стандартов ГОСТ Р 50339. 0-92 ( МЭК 60269-1-86) или VDE 0636 (Германия) соответственно).

    Практически все производители устройств защиты от импульсных перенапряжений в своих каталогах приводят требования по номинальному значению и типу характеристики срабатывания предохранителей дополнительной защиты от токов короткого замыкания. Как уже указывалось выше, для этих целей используются предохранители типа gG или gL, предназначенные для защиты проводок и распределительных устройств от перегрузок и коротких замыканий. Они обладают значительно меньшим (на 1-2 порядка) временем срабатывания по сравнению с автоматическими выключателями тех же номиналов. При этом предохранители имеют более высокую стойкость к импульсным токам значительных величин. Практический опыт и данные экспериментальных испытаний показывают, что автоматические выключатели очень часто повреждаются при воздействии импульсных перенапряжений. Известны случаи подгорания контактов или приваривания их друг к другу. И в том и в другом случае автоматический выключатель не сможет в дальнейшем выполнять свои функции.

    Возможны различные варианты применения предохранителей и, соответственно, существует ряд особенностей, которые необходимо учитывать еще на этапе проектирования схемы электроснабжения или при изготовлении щитовой продукции. Одна из таких особенностей заключается в том, что в случае, если в качестве защиты от токов короткого замыкания будет использоваться только общая защита (вводные предохранители), то при коротком замыкании в любом УЗИП (первой, второй или третьей ступени) всегда будет обесточиваться вся электроустановка в целом или какая-то ее часть. Применение предохранителей, включенных последовательно с каждым защитным устройством, исключает такую ситуацию. Но при этом встает вопрос подбора предохранителей с точки зрения селективности (очередности) их срабатывания. Решение этого вопроса осуществляется путем применения предохранителей тех типов и номиналов, которые рекомендованы производителем конкретных моделей устройств защиты от перенапряжений.

    Пример установки предохранителей F7-F12 приведен на рисунке 4.

     

    5021

    Рис.4 Установка защитных устройств в TN-S сеть 220/380 В

     

    ПРИМЕР: При использовании в схеме, приведенной на рисунке 4, разрядников HS55 в первой ступени защиты и варисторных УЗИП PIII280 во второй ступени применение предохранителей F5-F7 и F8-F10 будет обусловлено выбором номинального значения предохранителей F1-F3:

    ·         При значении F1-F3 более 315 А gG, значения F7-F9 и F10-F12 выбираются ­315 А gG и 160 А gG соответственно;

    ·         При значении F1-F3 менее 315 А gG, но более 160 А gG, предохранители F7-F9 можно не устанавливать, F10-F12 выбираются - 160 А gG;

    ·         При значении F1-F3 менее 160 А gG, предохранители F7-F12 можно не устанавливать.

     

    Иногда может потребоваться, чтобы в случае возникновения короткого замыкания в защитных устройствах не срабатывал общий предохранитель на вводе электропитающей установки. Для этого необходимо устанавливать в цепи каждого УЗИП предохранители с учетом коэффициента (1,6). Т.е. если предохранитель на входе электроустановки имеет номинальное значение 160 А gG, то предохранитель включенный последовательно с УЗИП должен иметь номинал 100 А gG.

    Применение для данных целей автоматических выключателей осложняется причинами, перечисленными выше, а также не соответствием их времятоковых характеристик характеристикам предохранителей.

    3. Часто встречающиеся недостатки в конструктивном исполнении устройств защиты от импульсных перенапряжений

    Многими фирмами-производителями предлагаются защитные устройства классов I и II, состоящие из базы, предназначенной для установки на DIN-рейку, и сменного модуля с нелинейным элементом (разрядником или варистором) с ножевыми вставными контактами. Такое конструктивное исполнение кажется на вид более выгодным и удобным для заказчика, чем монолитный корпус, в виду возможности более простого осуществления измерения сопротивления изоляции электропроводки (при измерениях повышенными напряжениями этот модуль можно просто изъять). Однако способность сконструированных таким способом контактов пропускать импульсные токи не превышает предел Imax = 25 kA для волны (8/20 мкс) и Iimp = 20 kA для волны (10/350 мкс).

    Несмотря на это, некоторые изготовители показывают в рекламных каталогах для таких защитных устройств максимальные разрядные способности величинами до Imax = 100 kA (8/20 мкс) или Iimp = 25 kA (10/350 мкс). К сожалению, это не подтверждается практическими данными. Уже при первом ударе испытательного импульса тока с такой амплитудой произойдут пережоги и разрушение не только ножевых контактов сменного модуля, но также и повреждение контактов клемм в базе. Разрушительное воздействие испытательного импульса тока Imax = 50 kA (8/20 мкс) на механическую часть такой системы и ножевой контакт показано на следующих фотографиях (рис. 5). Очевидно, что после такого воздействия сложным становится, собственно, сам вопрос извлечения вставки из базы, так как их контакты могут привариться друг к другу. Даже если вставку удастся отсоединить от базы, последнюю будет нельзя использовать далее из-за подгоревших контактов, которые приведут к резкому возрастанию переходного сопротивления и, соответственно, уровня защиты данного УЗИП.

    5022

     

    Для того чтобы избежать подобных последствий, защитные устройства модульной конструкции необходимо применять только тогда, когда существует гарантия, что ожидаемые импульсные воздействия не превысят указанных выше значений. Это может быть выполнено в случае правильного выбора типов и классов УЗИП для конкретной электроустановки и согласования их параметров между ступенями защиты.

    4. Использование УЗИП для защиты вторичных источников питания 

    Одним из наиболее часто используемых вторичных источников питания является выпрямитель. Следует отметить, что практика установки элементов защиты от перенапряжений (разрядников, варисторов и т.п.) на платах или внутри блоков выпрямителя, является не правильной с нашей точки зрения. Существующий опыт показывает, что эти варисторы как правило рассчитаны на токи 7 – 10 кА (форма импульса 8/20 мкС) и по своим параметрам соответствуют третьему классу защиты согласно ГОСТ Р 51992-2002( МЭК 61643-1-98). Как правило, эксплуатирующие организации считают данный тип защиты достаточным и никаких дополнительных мер для повышения надежности работы оборудования не принимают. Однако, при отсутствии дополнительных внешних устройств защиты от импульсных перенапряжений более высокого класса, а так же при возникновении длительных превышений рабочего напряжения питающей сети в данной ситуации возможно возникновение двух типовых аварийных ситуаций:

    a) Токи значительных величин, возникающие при срабатывании установленных внутри модуля варисторов, будут протекать по печатным проводникам плат или проводам внутри блоков выпрямителя по кратчайшему пути к заземляющей клемме стойки. Это может вызвать выгорание печатных проводников на платах и возникновению на параллельных незащищенных цепях наводок, которые в свою очередь приведут к выходу из строя электронных элементов блока выпрямителя. При превышении максимальных импульсных токов, определенных для данного варистора изготовителем, возможно, его возгорание и даже разрушение, что может привести к пожару и механическому повреждению самого выпрямителя (более подробно описано в п.п. 2.1).

    b) Несколько другая ситуация возникает в случае длительного установившегося превышения действующего напряжения в сети над максимальным допустимым рабочим напряжением Uc, определенным ТУ для данного варистора (как правило используются варисторы с Uc = 275 В). Подробно данная ситуация была описана выше (см п.п. 2.2). В результате описанного воздействия появляется вероятность возгорания печатных плат и внутренней проводки, а так же возникновения механических повреждений (при взрыве варистора), что подтверждается статистикой организаций, осуществляющих ремонт выпрямителей.

    Пример таких повреждений показан на рисунке 6.

    5023

    Рис.6

     С точки зрения решения проблем описанных в пункте (а), наиболее правильным является вариант установки защитных устройств, при котором они размещаются в отдельном защитном щитке или в штатных силовых и распределительных щитах электроустановки объекта. Применение внешних дополнительных устройств защиты позволяет защитить выпрямитель от импульсных перенапряжений величиной в сотни киловольт и соответственно снизить до допустимого (7 – 10 кА) значения величины импульсных токов, которые будут протекать через варисторы, встроенные в выпрямитель, или практически полностью исключить их.

    Для защиты оборудования от длительного установившегося превышения действующего напряжения в сети (пункт b) можно использовать устройства контроля напряжения фазы или подобные им (см. рис. 7).

    5024

    Рис. 7 Подключение устройства контроля фаз РКФ-3/1

    [ http://www.energo-montage.ru/pages/top/articles/osobennosti_ekspluatacii_uzip/index_76.html]

    Тематики

    Синонимы

    EN

    3.1.45 устройство защиты от импульсных перенапряжений (surge protective device); SPD: Устройство, предназначенное для ограничения перенапряжения и скачков напряжения; устройство содержит, по крайней мере, один нелинейный компонент.

    Источник: ГОСТ Р МЭК 62305-2-2010: Менеджмент риска. Защита от молнии. Часть 2. Оценка риска оригинал документа

    3.53 устройство защиты от импульсных перенапряжений (surge protective device); SPD: Устройство, предназначенное для ограничения перенапряжения и скачков напряжения; устройство содержит по крайней мере один нелинейный компонент.

    Источник: ГОСТ Р МЭК 62305-1-2010: Менеджмент риска. Защита от молнии. Часть 1. Общие принципы оригинал документа

    Русско-английский словарь нормативно-технической терминологии > устройство защиты от импульсных перенапряжений

  • 7 категория витой пары

    1. category

     

    категория витой пары
    -
    [Интент]

    категория
    Стандарт Е1АД1А 568А, в котором произведена классификация витых пар в зависимости от используемого частотного диапазона (табл. С-1).
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    категория
    Ранжирование пассивных элементов в зависимости от предельной частоты, на которой обеспечиваются работа пассивного элемента в составе кабельной линии и ранжирование кабельных линий, согласно североамериканскому стандарту, в зависимости от полосы пропускания кабельной линии.
    [ http://www.lanmaster.ru/SKS/DOKUMENT/568b.htm]

    Существует несколько категорий витой пары, которые нумеруются от CAT1 до CAT7: 

    • CAT1 (полоса частот 0,1 МГц) — телефонный кабель, всего одна пара (в России применяется кабель и вообще без скруток — «лапша» — у нее характеристики не хуже, но больше влияние помех). В США использовался ранее, только в «скрученном» виде. Используется только для передачи голоса или данных при помощи модема.
    • CAT2 (полоса частот 1 МГц) — старый тип кабеля, 2 пары проводников, поддерживал передачу данных на скоростях до 4 Мбит/с, использовался в сетях Token ring и Arcnet. Сейчас иногда встречается в телефонных сетях.
    • CAT3 (полоса частот 16 МГц) — 4-парный кабель, используется при построении телефонных и локальных сетей 10BASE-T и token ring, поддерживает скорость передачи данных до 10 Мбит/с или 100 Мбит/с по технологии 100BASE-T4 на расстоянии не дальше 100 метров. В отличие от предыдущих двух, отвечает требованиям стандарта IEEE 802.3.
    • CAT4 (полоса частот 20 МГц) — кабель состоит из 4 скрученных пар, использовался в сетях token ring, 10BASE-T, 100BASE-T4, скорость передачи данных не превышает 16 Мбит/с по одной паре, сейчас не используется.
    • CAT5 (полоса частот 100 МГц) — 4-парный кабель, использовался при построении локальных сетей 100BASE-TX и для прокладки телефонных линий, поддерживает скорость передачи данных до 100 Мбит/с при использовании 2 пар.
    • CAT5e (полоса частот 125 МГц) — 4-парный кабель, усовершенствованная категория 5. Скорость передач данных до 100 Мбит/с при использовании 2 пар и до 1000 Мбит/с при использовании 4 пар. Кабель категории 5e является самым распространённым и используется для построения компьютерных сетей. Иногда встречается двухпарный кабель категории 5e. Кабель обеспечивает скорость передач данных до 100 Мбит/с. Преимущества данного кабеля в более низкой себестоимости и меньшей толщине.
    • CAT6 (полоса частот 250 МГц) — применяется в сетях Fast Ethernet и Gigabit Ethernet, состоит из 4 пар проводников и способен передавать данные на скорости до 1000 Мбит/с и до 10 гигабит на расстояние до 50 м. Добавлен в стандарт в июне 2002 года.
    • CAT6a (полоса частот 500 МГц) — применяется в сетях Ethernet, состоит из 4 пар проводников и способен передавать данные на скорости до 10 Гбит/с и планируется использовать его для приложений, работающих на скорости до 40 Гбит/с.
    • CAT7 — спецификация на данный тип кабеля утверждена только международным стандартом ISO 11801, скорость передачи данных до 10 Гбит/с, частота пропускаемого сигнала до 600—700 МГц. Кабель этой категории имеет общий экран и экраны вокруг каждой пары. Седьмая категория, строго говоря, не UTP, а S/FTP (Screened Fully Shielded Twisted Pair).

    Кабель более высокой категории обычно содержит больше пар проводов и каждая пара имеет больше витков на единицу длины.

    [ Источник]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > категория витой пары

  • 8 базовая семантическая единица

    1. BSU
    2. basic semantic unit BSU
    3. basic semantic unit

     

    базовая семантическая единица
    БСЕ

    СЕФАКТ ООН
    [Упрощение процедур торговли: англо-русский глоссарий терминов (пересмотренное второе издание) НЬЮ-ЙОРК, ЖЕНЕВА, МОСКВА 2011 год]

    EN

    basic semantic unit
    BSU

    UN/CEFACT
    [Trade Facilitation Terms: An English - Russian Glossary (revised second edition) NEW YORK, GENEVA, MOSCOW 2061]

    Тематики

    Синонимы

    EN

    4.6 базовая семантическая единица (basic semantic unit BSU): Сущность, которая обеспечивает абсолютную и универсальную идентификацию определенных объектов домена приложения (например, класс, тип элемента данных).

    Источник: ГОСТ Р 54136-2010: Системы промышленной автоматизации и интеграция. Руководство по применению стандартов, структура и словарь оригинал документа

    Русско-английский словарь нормативно-технической терминологии > базовая семантическая единица

  • 9 характеристика продукции

    1. property

    2.18 характеристика продукции (property): Определенный параметр, используемый для описания и различения продукции (изделий).

    Примечание 1 - Характеристика определяет лишь одно свойство данного объекта.

    Примечание 2 -Характеристика как таковая определяется множеством соответствующих атрибутов, типы и число которых с максимально возможной точностью определены в настоящем стандарте.

    Примечание 3 - Термин «характеристика», используемый в настоящем стандарте, и термин «тип элемента данных», применяемый в МЭК 61360, - синонимы.

    Примечание 4 - Термин «характеристика», используемый в настоящем стандарте, и термин «характеристика», применяемый в ИСО 704, не считают синонимами. В ИСО 704 характеристика в большей степени относится к объектам. В настоящем стандарте данный термин применяют для различения продукции, относящейся к одному и тому же характеристическому классу. Таким образом, характеристика ассоциируется с областью значений и устанавливает значения для каждого экземпляра характеристического класса продукции.

    Источник: ГОСТ Р 53890-2010: Руководство по разработке спецификаций на характеристики и классы продукции. Часть 2. Технические принципы и рекомендации оригинал документа

    Русско-английский словарь нормативно-технической терминологии > характеристика продукции

  • 10 элемент словаря

    1. dictionary element

    4.17 элемент словаря (dictionary element): Набор признаков, которые составляют словарное описание определенных объектов области (домена) применения (например, тип элемента данных).

    Источник: ГОСТ Р 54136-2010: Системы промышленной автоматизации и интеграция. Руководство по применению стандартов, структура и словарь оригинал документа

    Русско-английский словарь нормативно-технической терминологии > элемент словаря

См. также в других словарях:

  • Тип данных — (встречается также термин вид данных)  фундаментальное понятие теории программирования. Тип данных определяет множество значений, набор операций, которые можно применять к таким значениям и, возможно, способ реализации хранения значений и… …   Википедия

  • тип атрибута элемента данных — — [ГОСТ Р 54325 2011 (IEC/TS 61850 2:2003)]] Тематики релейная защита EN data attribute typeDAT …   Справочник технического переводчика

  • тип данных — 2.35 тип данных (data type): Поименованная совокупность данных с общими статическими и динамическими свойствами, устанавливаемыми формализованными требованиями к данным рассматриваемого типа. Источник: ГОСТ Р ИСО/МЭК ТО 10032 2007: Эталонная… …   Словарь-справочник терминов нормативно-технической документации

  • тип данных элемента данных — 3.1.6 тип данных элемента данных (Data Element Datatype; DE datatype): Спецификация множества различных значений для элемента данных, характеризуемая свойствами этих значений и возможными операциями над этими значениями. Примечание 1 Множество… …   Словарь-справочник терминов нормативно-технической документации

  • Множество (тип данных) — У этого термина существуют и другие значения, см. Множество (значения). Множество тип и структура данных в информатике, является реализацией математического объекта множество. Данные типа множество позволяют хранить ограниченное число значений… …   Википедия

  • тип элемента данных — тип данных Предписанные для данного элемента данных способы его интерпретации, воспроизведения и допустимые операции и значения. [ГОСТ Р 52292 2004] Тематики электронный обмен информацией Синонимы тип данных …   Справочник технического переводчика

  • тип — 2.2 тип: Лампы, имеющие одинаковые световые и электрические параметры, независимо от типа цоколя. Источник: ГОСТ Р МЭК 60968 99: Лампы со встроенными пускорегулирующими аппаратами для общего освещения. Требования безопасности …   Словарь-справочник терминов нормативно-технической документации

  • тип элемента данных — 6.1.5 тип элемента данных (тип данных):Предписанные для данного элемента данных способы его интерпретации, воспроизведения и допустимые операции и значения. Источник: ГОСТ Р 52292 2004: Информационная технология. Электронный обмен информацией.… …   Словарь-справочник терминов нормативно-технической документации

  • Типизация данных — Тип данных  фундаментальное понятие теории программирования. Тип данных определяет множество значений, набор операций, которые можно применять к таким значениям, и, возможно, способ реализации хранения значений и выполнения операций. Любые… …   Википедия

  • Валютный тип — Тип данных Содержание 1 История 2 Определение 3 Необходимость использования типов данных …   Википедия

  • ГОСТ Р ИСО/МЭК 19778-1-2011: Информационная технология. Обучение, образование и подготовка. Технология сотрудничества. Общее рабочее пространство. Часть 1. Модель данных общего рабочего пространства — Терминология ГОСТ Р ИСО/МЭК 19778 1 2011: Информационная технология. Обучение, образование и подготовка. Технология сотрудничества. Общее рабочее пространство. Часть 1. Модель данных общего рабочего пространства оригинал документа: 5.4.9 AE CE ID …   Словарь-справочник терминов нормативно-технической документации

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»